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Abstract. The distribution of W and Z bosons produced with small transverse momentum (pT) at hadron
colliders receives important contributions from large logarithms arising from soft gluon emission. Although
conventionally the all-orders resummation of these ‘Sudakov’ logarithms is performed in impact parameter
(Fourier transform) space, pT-space resummation is also possible, and offers certain advantages. We present
a detailed phenomenological analysis of W and Z production at small pT at the Tevatron pp̄ collider, using
pT-space resummation. A good description of the CDF and D0 data can be obtained provided a significant
non-perturbative contribution is included. We also present predictions for the LHC.

1 Introduction

The description of gauge boson production at hadron col-
liders has recently attracted much theoretical interest, es-
pecially in the light of future high precision experiments at
the Tevatron and the LHC [1–3]. Reliable predictions can
only be obtained if soft gluon radiation effects are correctly
taken into account. Theoretically the soft gluon emission
manifests itself in the presence of large logarithmic correc-
tions (Sudakov logarithms). For the particular case of the
transverse momentum (pT) distribution of a boson pro-
duced with invariant mass Q, the Sudakov logarithms are
the logarithms of the ratio Q2/pT

2. In the small pT limit
the logarithms diverge and the standard fixed-order per-
turbation theory approach breaks down. However, a finite
result can be recovered if the soft gluon emission is ac-
counted for to all orders in αs. This is achieved by resum-
ming the logarithmic corrections.

Resummation can be performed either directly in
transverse momentum (pT) space or in the Fourier conju-
gate impact parameter (b) space. The most leading loga-
rithmic contributions, of the form αn

s ln
2n−1(Q2/pT

2), can
be directly resummed in pT space (the so-called Double
Leading Logarithm Approximation) [4]. The impact pa-
rameter (b) space method [5] allows one to resum sub-
leading logarithms, including those ‘kinematic’ logarithms
arising as a direct result of transverse momentum conser-
vation [6]. Although very successful theoretically, the b
space method suffers from certain deficiencies and draw-
backs which need to be ‘fixed’ in order to obtain a satis-
factory agreement between the theoretical predictions and
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experimental data. For example, one experiences difficul-
ties when matching the resummed (small pT) and fixed-
order (large pT) predictions. Moreover, it is impossible to
make predictions for any value of pT without a prescrip-
tion dealing with the non-perturbative regime of large b1.
These difficulties can be naturally circumvented if the re-
summation is performed in pT space [8]. Unfortunately
the pT space methods which have been developed so far
for resumming subleading logarithms are derived from the
b space approach [8–10], and as such they simply provide
an approximation to the b space result. However, the goal
is to develop a phenomenologically useful pT space ex-
pression that reproduces all the good features of the b
space resummation without the drawbacks related to this
method.

In a previous paper [10] we proposed a pT space re-
summation formalism at the parton level which resums
the first four ‘towers’ of logarithms (i.e. terms of the form
αn
s ln

2n−m(Q2/pT
2), m = 1, .., 4), including the effects of

transverse momentum conservation. The differences be-
tween our formalism (KS) and other pT space approaches
(FNR [9] and EV [8]) were discussed in [11]. Here we want
to concentrate on the practical applications of our formal-
ism, in particular on the comparison with available Teva-
tron data.

In our analysis we use the most recent sets of CDF
[12] and D0 data [13] on Z production and D0 data [14]
on W production. Since we are only interested here in the
resummed part of the cross section and do not perform
matching with the fixed-order part, we do not consider

1 Recently it has been argued [7] that the b space drawbacks
discussed here are less relevant at Tevatron and LHC energies
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data above pT > 25 GeV. In this pT range the resummed
part accounts for almost the entire cross section.

In a manner similar to the b space formalism, the pT

space formalism is incomplete without a prescription for
dealing with the non-perturbative effects. Indeed previous
phenomenological analyses have shown that the very small
pT region is dominated by non-perturbative contributions.
Here we use the method of introducing non-perturbative
effects in pT space first proposed in [8]. We investigate
the form and size of the non-perturbative contributions
obtained from fits to the data. We finish our investigations
by commenting onW and Z boson production at the LHC.

2 Theoretical cross section
for pp̄→W, Z + X

In this section we summarise the derivation of the main
theoretical results for pT space used in fits to the data. For
the discussion of the b space results the reader is referred
to [5,15].

The resummed part of the theoretical cross section in
pT space for a Drell-Yan-type process follows from the b
space formula, cf. [5]

dσ

dpT
2 dQ2 =

σ0

Q2

∑
q

e2
q

∫ 1

0
dxA dxB δ

(
xAxB − Q2

s

)

×1
2

∫ ∞

0
db b J0(pTb) exp[S(b,Q)]

×f̃ ′
q/A

(
xA,

b0
b

)
f̃ ′
q̄/B

(
xB ,

b0
b

)
. (1)

with σ0 = 4πα2/(9s), b0 = 2 exp(−γE), and where

S(b,Q2) = −
∫ Q2

b20
b2

dµ̄2

µ̄2

[
ln
(
Q2

µ̄2

)
A(αS(µ̄2))

+B(αS(µ̄2))
]
, (2)

A(αS) =
∞∑
i=1

(αS

2π

)i
A(i) ,

B(αS) =
∞∑
i=1

(αS

2π

)i
B(i) . (3)

We first consider the non-singlet (NS) cross-section,
i.e. we introduce

f̃ ′
q/H = f ′

q/H − f ′
q̄/H

as modified higher-order NS parton distributions. The
modified parton distributions are related to the MS parton
distributions, f , by a convolution [5,16,15]

f ′
a/H(xA, µ) =

∑
c

∫ 1

xA

dz

z
Cac

(xA
z

, µ
)
fc/H (z, µ) , (4)

where (a, b �= g)

Cab(z, µ) = δab

{
δ(1− z) + ᾱs(µ)CF

×
[
1− z +

(
π2

2
− 4
)

δ(1− z)
]}

,

Cag(z, µ) = ᾱs(µ)TR
[
2z(1− z)

]
,

and ᾱs(µ) =
αs(µ)

2π , CF = 4/3, TR = 1/2.
The N -th moment of the cross section with respect to

τ = Q2/s has the form

M(N) =
∫

dτ τN
Q2

σ0

dσ

dpT
2 dQ2

=
∑
q

e2
q

1
2

∫ ∞

0
db b J0(pTb)

× exp [S(b,Q)] f̃ ′
q/A

(
N,

b0
b

)
f̃ ′
q̄/B

(
N,

b0
b

)
. (5)

Solving the DGLAP equation for the N -th moment of the

modified parton distribution f̃ ′
q/H(N,Q) =

∫ 1

0
dxHxNH

f̃ ′
q/H(xH , Q), and integration by parts lead to (cf. [8])

M(N) =
d

dpT
2

{∑
q

e2
q f̃ ′

q/A(N, pT)f̃ ′
q̄/B(N, pT)

×
∫ ∞

0
dx J1(x)

× exp

[
S(x,Q)− 2

∫ pT
2

b20pT
2

x2

dµ̄2

µ̄2 γ′
N (ᾱs(µ̄))

]}
,

where x = pTb.
In order to obtain an expression for the hadron level

cross section, the following approximation is introduced

exp

[
S(x,Q)− 2

∫ pT
2

b20pT
2

x2

dµ̄2

µ̄2 γ′
N (ᾱs(µ̄))

]
≈ exp [S(x,Q)] .

(6)
The above equality is exact for the first four towers

of logarithms; it is only the fifth tower that contains the
first modified anomalous dimension coefficient γ

′(1)
N . This

can be easily seen by expanding the exponential in (6)
(assuming here a fixed coupling constant for simplicity)

exp

[
S(x,Q)− 2

∫ pT
2

b20pT
2

x2

dµ̄2

µ̄2 γ′
N (ᾱs(µ̄))

]

=
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N=0

(−1)N
N !

[
1
2
(A(1)ᾱs +A(2)ᾱs

2 + ...)(L+ Lb)2

+(B(1)ᾱs +B(2)ᾱs
2 + ...)(L+ Lb)

+2(γ′(1)
N ᾱs + γ

′(2)
N ᾱs

2 + ...)Lb

]N
,
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where L = ln(Q2/pT
2) and Lb = ln(x2/b20). The first

term containing γ
′(1)
N which does not vanish after inte-

gration over x is of the form ᾱs
NA(1)N−1

γ
′(1)
N L2(N−2)L3

b .
The same statement holds also for the singlet parton dis-
tribution functions.

The resulting expression

M(N) =
d

dpT
2

{∑
q

e2
q f̃ ′

q/A(N, pT)f̃ ′
q̄/B(N, pT)

×
∫ ∞

0
dx J1(x) exp[S(x,Q)]

}
(7)

can now be transformed back to momentum space by the
means of the inverse Mellin transform

dσ

dpT
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. (8)

At the parton level we calculated the quantity2

1
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π
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≡ − 1
2pT

2Σ1(pT, Q) , (9)

in terms of resummed towers of logarithms in pT space.
Here S̃(x,Q) = S(x,Q)−Sη(Q) with Sη and c coefficients

2 see (21) in [10]

defined in [10]. The expression for
∫ ∞

0
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Finally we arrive at the pT space formula for the Drell-Yan
cross section at the hadron level

dσ

dpT
2 dQ2

=
σ0

Q2

∑
q

e2
q

∫ 1

0
dxA dxB δ

(
xAxB − Q2

s

)

× d

dpT
2

{
Σ2(pT, Q) f ′

q/A(xA, pT) f ′
q̄/B(xB , pT)

}
. (11)

In what follows we will refer to the result in (11) as the
KS hadron-level formula in pT space.

In principle, the parton level formula (9) allows us to
resum any number of towers of logarithms. In practice,
however, the fifth tower of logarithms cannot be fully
taken into account due to the lack of knowledge of the
coefficient A(3). Since our approximation (6) is valid only
up to the fifth tower too, (11) can be used to resum the
first four towers of logarithms, in other words the summa-
tion in (10) stops at N = 4. In [10], the contributions from
fifth and higher towers were estimated to be numerically
very small in the region of pT of interest.

The analogous expression for the transverse momen-
tum distribution of a massive vector boson V produced in
pp̄→V +X is

dσ

dpT

= σ0

∑
qq′

UV
qq′

∫ 1

0
dxA dxB δ

(
xAxB − M2

V

s

)
(12)

× d

dpT

{
Σ2(pT,MV ) f ′

q/A(xA, pT) f ′
q′/B(xB , pT)

}
,

where

σ0 =
π
√
2GF

N

UV
qq′ =

{
|Vqq′ |2 V = W± ,

(V 2
q +A2

q)δqq′ V = Z ,
(13)

where Vqq′ denotes the appropriate CKM matrix element,
and Vq, Aq are the vector and axial couplings of the Z
boson to quarks.
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In practice it is convenient to split the differentiation
in (12) into two terms

dσ

dpT

= σ0

∑
qq′

UV
qq′

∫ 1

0
dxA dxB δ

(
xAxB − M2

V

s

)
×

{
− 1

pT

Σ1(pT,MV )f ′
q/A(xA, pT) f ′

q′/B(xB , pT)

+ Σ2(pT,MV )
d

dpT

[
f ′
q/A(xA, pT) f ′

q′/B(xB , pT)
]}

.

(14)

This trick allows us to apply an inevitable numerical
derivative only to the product of the parton distributions
and not to the whole expression, leading to a reduction of
the numerical error.

2.1 Inclusion of the non-perturbative effects
in pT space

The form of the non-perturbative ansatz in pT space is
expected to be important only in regions where perturba-
tion theory fails, i.e. at the very low values of pT ≤ 2− 3
GeV. In contrast, the higher pT region can be described
purely by the resummed perturbative QCD expression.
We choose to incorporate the low energy effects using the
form of the pT space non-perturbative function F̃NP (pT)
advocated in [8]

F̃NP (pT) = 1− exp [−ã pT
2] . (15)

The role of this function is to account for the distribution
in the very low pT region, and here we are assuming that
the shape is approximately gaussian. However in order to
combine this with the perturbative result, the latter needs
to be ‘frozen’ or ‘switched off’ at some critical value of pT

where the coupling αs becomes large. A similar freezing
is required in the b space approach where the coupling is
effectively αs(1/b). In other words we require not only (i) a
form F̃NP (pT) for the distribution in the non-perturbative
region, but also (ii) a prescription for moving smoothly
from the perturbative to the non-perturbative region. One
possibility for the latter is the ‘freezing’ prescription of [8]

pT∗ =

√
pT

2 + pT lim
2 exp

[
− pT

2

pT lim
2

]
(16)

which has the property

pT∗ =

{
pT , pT � pT lim ,

pT lim , pT  pT lim .
(17)

It is important to note that there are two pieces of in-
formation contained in this definition: the value of the
limiting value pT lim and the abruptness of the transition
to this value. The use of a gaussian function in the defini-
tion (16), compared to say a power law function, implies

a rapid transition that, as we shall see below, is consistent
with the data.

Applying the above prescription to our expression (12)
leads to

dσ

dpT

= σ0

∑
qq′

UV
qq′

∫ 1

0
dxA dxB δ

(
xAxB − M2

V

s

)

×
{

− 1
pT∗

dpT∗
dpT

Σ1(pT∗,MV )f ′
q/A(xA, pT∗)

×f ′
q′/B(xB , pT∗)F̃NP (pT) +Σ2(pT∗,MV )

dpT∗
dpT

× d

dpT∗

[
f ′
q/A(xA, pT∗) f ′

q′/B(xB , pT∗)
]
F̃NP (pT)

+Σ2(pT∗,MV )f ′
q/A(xA, pT∗) f ′

q′/B(xB , pT∗)

× d

dpT

F̃NP (pT)

}
. (18)

Note that the simple form of F̃NP (pT) in the present
framework does not take into account a possible depen-
dence on Q and x. This is in contrast to the b space treat-
ment of [21], where an x–dependent linear term in b was
added to the argument of the gaussian non-perturbative
function. It has also been argued [5] that the width of the
non-perturbative gaussian distribution, in our case the pa-
rameter 1/ã, should increase linearly with logQ3. Since in
the present case we are only interested in W,Z produc-
tion at a single collider energy, the values of Q and x are
essentially fixed at MV and MV /

√
s respectively. There-

fore we are not able to say anything about the form of the
dependence of the non-perturbative parameters on Q and
x. Nor will we investigate different functional forms for
F̃NP (pT) — the simple gaussian form in (15) will allow
perfectly good fits to the Tevatron data.

The lack of information on the x dependence of the
non-perturbative contributions should be borne in mind
when considering the predictions for W and Z production
at the LHC.

3 Results and discussion

For the parton level cross section we have advocated [10]
the use of the renormalization scale µR = pT

(2/3)Q(1/3) as
a means of eliminating certain logarithmic terms from the
Sudakov factor and thus increasing the reliability of our
approach. Since the renormalization scale determines the
strength of the coupling in the theoretical predictions, it
must somehow depend on the size of the transverse mo-
mentum and we require the choice of the scale to reflect
this fact. Moreover, for values of pT where perturbative
QCD can be safely applied and for the values of Q con-
sidered here, such a µR is always bigger then the b quark

3 Indeed, fits of a non-perturbative gaussian distribution to
the low energy data [17] typically give much larger values of ã
(≈ 0.55 GeV−2), which suggests a strong dependence of ã on
Q
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mass, thus lessening the relevance of the correction due
to the treatment of quark mass thresholds. Another ob-
vious choice for the renormalization scale is µR = pT

4.
However, since we find only a very small dependence of
the resummed part of the cross section on the choice of
µR, from now on we use µR = pT

(2/3)Q(1/3) as the default
choice for the KS approach.

The Drell-Yan cross section (11) has been derived in
the limit of a fixed number of quark flavours, Nf , which
implies that no quark mass threshold effects are consid-
ered. In the original b space approach, the dependence on
Nf enters in the Sudakov factor through the A(2), B(2)

coefficients and through the β function in the expansion
of αs. For our pT space method we propose to change Nf

according to the number of flavours active at the renor-
malization scale at which αs is calculated while the re-
mainder of the expression is derived in the massless quark
limit. With the choices of the scale we use this roughly
corresponds to the energy scale of the emitted gluons and
fits comfortably into the physical picture of the process.
Changing the number of active quark flavours Nf as pT

varies immediately leads to the problem of obtaining reli-
able predictions free of unphysical discontinuities. To over-
come this we use an analytically extended αMS

s scheme
which incorporates finite-mass quark threshold effects into
the running of the coupling, as proposed by Brodsky et
al. [19]. By connecting the coupling directly to the ana-
lytic and physically-defined effective charge scheme, the
authors of [19] obtain an analytic expression for the effec-
tive number of flavours which is a continuous function of
the renormalization scale and the quark masses.

The results presented below are for the Tevatron ex-
periments, CDF and D0, at

√
s = 1.8 TeV. Unless stated

otherwise we use the factorization scale µf = pT, MRST99
parton distribution functions [20] (central gluon), branch-
ing ratios BR(Z→e−e+) = 3.366%, BR(W→eν) = 11.1%
and the world average value of the strong coupling αs(MZ)
= 0.1175. To normalize the theory predictions to the data
we take only those experimental points with pT < 15 GeV.

There is a significant amount of Tevatron data on W
and Z production that should, in principle, allow a precise
determination of the non-perturbative parameters from
fits to the data. However since the measurement of the
W transverse momentum requires correcting for detector
effects that are much stronger that in the Z measurement
case, for the purpose of this analysis we take only the Z
data. Again, we consider only those experimental points
with pT < 15 GeV for the fit range. The overall normal-
ization is taken as a free parameter, since we are primarily
concerned with the shape of the distributions5.

Generally we find that the best χ2/d.o.f. value is ob-
tained by values of

√
1/ã and pT lim of order 3−4 GeV. In

this context the values proposed by the EV collaboration
ã = 0.1 GeV−2, pT lim = 4 GeV provide one of the best fits

4 Other choices of µR have been considered in the litera-
ture, for example the authors of [18] proposed to take µR =√

pT
2 + Q2

5 The total W and Z cross sections are known to be well
described by NNLO perturbation theory, see e.g. [20]
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Fig. 1. The contours of equal χ2 in the ã, pT lim plane for the
KS pT space approach with the non-perturbative input of the
form (15,16). Both CDF and D0 data (with separate normal-
ization) for pT < 15 GeV are used in the fit. The outer and
inner contours correspond to χ2/d.o.f. = 1 and 0.75 respec-
tively

and describe the Z data well. This is also in agreement
with the CDF and D0 analysis, cf. [12,13]. Furthermore
we find that there is a wide range of strongly correlated
values of larger ã and smaller pT lim for which χ2/d.o.f. is
only minimally worse. This is illustrated in Fig. 1, which
shows the equal χ2 contours in the plane for χ2/d.o.f. =
1 and 0.75.

The correlation between ã and pT lim is easy to under-
stand. Increasing pT lim corresponds to requiring the non-
perturbative contribution to describe the data out to a
larger value of pT, and therefore a broader gaussian distri-
bution (equivalently, smaller ã) is required. The fact that
the fit deteriorates sharply as pT lim is made very small
shows that (‘frozen’) perturbation theory alone cannot de-
scribe the data over the whole pT range.

Given the large variation in the allowed values of ã
and pT lim, it is difficult to gauge the predictive power of
these results, especially when one allows for a possible ad-
ditional x and Q dependence. We also find that with the
current experimental data there is no need to introduce
additional overall smearing, as proposed in [8]. A modi-
fication of F̃NP (pT), such as adding a linear term in the
exponential or using a different freezing method, does not
significantly improve the fit either.

In Figs. 2, 3, 4 we present a comparison between ex-
perimental data on Z production as measured by CDF
and D0, W production as measured by D0, and various
theoretical distributions calculated using (i) the b space
method, (ii) the EV pT space method, and (iii) the KS pT

space method. We observe good agreement between the
data and the theoretical predictions for all three meth-
ods, in the range of pT = 0 ∼ 25 GeV. In general, the
b space distribution is more ‘peaked’ than the pT space
equivalents. This effect is, however, very susceptible to
the choice of the non-perturbative function and values of
the non-perturbative parameters. The b space distribution
is also higher in the intermediate range of pT = 10 ∼ 20
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Fig. 2. Comparison between CDF data on Z production and
theoretical predictions for the b space method, pT space method
in the EV approach and in the KS approach. For the b space
method we use an effective gaussian form of F NP as in [15]

GeV, where the non-perturbative physics does not influ-
ence the resummed perturbative result. In this region the
KS distribution approximates the b space result better
than the corresponding EV distribution. Given that the
KS formalism resums more towers of logarithms than the
EV formalism, this is an expected result. The increase of
the cross section due to incorporating the fourth, NNNL,
tower can be as big as 4% for some values of pT, both for
W and Z production [10]. Interestingly we also observe a
significant sensitivity to the value of αs(MZ) used in the
calculations. A variation of αs(MZ) by ±0.005 around its
average value, 0.1175, can cause, for some values of pT, a
more than ±8% change in the Z pT distribution.

The transverse momentum distribution ofW ’s and Z’s
at the LHC, predicted in the pT space formalism (KS),
is shown in Fig. 5. The results agree with similar analy-
ses performed using the b space method [2]. For the sake
of this analysis we used the standard Tevatron values
of the non-perturbative parameters ã = 0.1 GeV−2 and
pT lim = 4 GeV in pT space. This may prove to be a very

Fig. 3. Comparison between D0 data on Z production and
theoretical predictions for the b space method, pT space method
in the EV approach and in the KS approach. For the b space
method we use an effective gaussian form of F NP as in [15]

unwise assumption if the non-perturbative parameteriza-
tion does depend significantly on the partons momentum
fractions, for example in the way it was proposed for the
b space method ([21]). However it does provide a useful
benchmark and a reasonable ‘first guess’.

4 Summary

We have applied the KS resummation technique in pT

space, developed in [10], to the hadronic production of vec-
tor bosons. At the hadron level our approach retains the
potential of the full resummation of the first four towers
of logarithms. We also allow for a non-perturbative con-
tribution, with a smooth interpolation between the per-
turbative and non-perturbative regimes at small pT. Our
numerical results generally show good agreement with re-
cent data on W and Z boson production from the Teva-
tron collider.

For the resummed part of the dσ/dpT distribution we
observe rather weak dependence on the renormalization
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Fig. 4. Comparison between D0 data on W production and
theoretical predictions for the b space method, pT space method
in the EV approach and in the KS approach. For the b space
method we use an effective gaussian form of F NP as in [15]

scale, but some sensitivity to the value of αs(MZ). How-
ever the non-perturbative contribution, which at present
must be determined from fits to data, is not well deter-
mined. We have not attempted to estimate the full error
on the non-perturbative contribution. Rather, we showed
that a simple Gaussian form, with reasonable values of
the parameters, gives an acceptable fit. The width of the
gaussian and the transition point between the perturba-
tive and non-perturbative regions are, however, strongly
correlated. This, combined with the lack of knowledge of
the x and Q dependence of the non-perturbative parame-
ters, makes it difficult to formulate precise predictions for
the corresponding distributions at the LHC.
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Fig. 5a,b. pT space predictions (KS formalism) for the trans-
verse momentum distribution at the LHC of: a W boson, b Z
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